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An extension to the short-wave asymptotics of the 
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The method of matched asymptotic expansions is used to extend the short-wave 
asymptotics of the transmission coefficient T by the addition of the terms of order 
l / N 5 ,  (log N ) 2 / N 6  and log N / N 6  as N +  co (where N = wavenumber times cylinder 
radius). The result is the formula 

2i T=- 
nN4 

-xN ( 5  - 2y - log 4 + g)] + O($) as N +  co 
n2N2 4 

(where y = Euler’s constant). The first term above is that derived rigorously by Ursell 
(1961) using an integral-equation method; the second term is that added by 
Leppington (1973) using matched asymptotic expansions; and the next three terms 
are those derived in this paper. Significant agreement between numerical values of 
T obtained from the completed fifth-order asymptotics and those obtained using 
Ursell’s multipole expansions is demonstrated for 8 < N < 20 (table 2). The extensions 
of the perturbation expansions for the potential in the various fluid sub-domains (used 
in the method of matched expansions) provide some interesting cross-checks, between 
the solutions for potentials occurring later in the series and determined at  advanced 
matching stages, with those for potentials occurring earlier on and determined 
independently at  an earlier stage in the matching process. Some examples are given. 

1. The mathematical model 
A sinusoidal wavetrain travelling on an inviscid, incompressible ocean of great 

depth is incident on a semi-submerged circular cylinder whose generators are parallel 
to the wave crests. Surface tension and variations in atmospheric pressure are 
neglected and attention is confined to irrotational, time-periodic motions for which’ 
the total potential can be taken as Re [dx, y) e-iwt]. 

Here (5, y) are rectangular Cartesian coordinates with origin 0 at the centre of the 
cylinder, Ox pointing towards the incoming wave and Oy vertically downwards into 
the fluid. If all motions are assumed to be of small amplitude, then the complex-valued 
velocity potential Q, must satisfy the following spatial boundary-value problem : 

V2q = 0 in the fluid domain, 

av 
aY 

v+s - = 0 on the mean free surface, y = 0 
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(where E = g/02 and g is the acceleration due to gravity), 

9 = 0 on the submerged part of the cylinder 
ar 

(where r = (x2 + y2)t), 

IVrpl+O as y+m. 

q.+, y) - e-Y/'[exp( -i(x-a) )+R(exp -)I i(x-a) as x+ + co, 
E 

~ z ,  y) - P[e- i (z+a)/~-~~~] as x+ - 00 

(where 8, 
In  these latter equations it should be noted that the amplitude of the incident wave 

has been normalized by suitable choice of length and time scales and that the phase 

are constants and a is the cylinder radius). 

factors 
exp f (5) 

have been inserted for convenience later on. In addition, the reflection and transmission 
coefficients, R and T, are related to R and P by the equations 

2 ia 
R = R exp ( ---) , T = P exp ( -?) . 

John (1950) has shown that the problem as stated has a unique solution provided 
that the edge conditions, S,(arp/aS,)+O as 6, -to (where 6, = [ ( ~ T a ) ~ + y ~ ] t  are 
satisfied. 

2. Description of the method of matched asymptotic expansions as applied 
to the transmission problem 

As Leppington (1973) gives a full discussion of the method in a more general context 
details will be kept to a minimum here. 

In  the short-wave theory the wavelengths are assumed small compared to the 
cylinder semi-beam (./a < 1) and the fluid domain is subdivided initially into three 
regions : 

(i) a right inner region { P :  E+ P 4 a}, 
(ii) a left inner region { P :  E- P 4 a}, 

(iii) an outer region { P :  E ,  P $ E } ,  

where E ,  are the points where the cylinder meets the mean free surface. 
In  the inner regions new coordinate axes E+ X,, E+ Y+ and E- X-, E- Y- are taken 

with E+ X+ in the same direction as Ox, E- X- in the opposite direction to Ox and 
the Y-axes pointing vertically downwards. Coordinates in these regions are rescaled 
(by E )  so that the free-surface condition is non-dimensionalized and Laplace's 
equation is preserved. Thus 

x-a -(x+a) Y , Y - = Y  X + = E  3 + - €  Y --, x-= 
E E '  

Consequently S, = eR* where R ,  = (X: + P+)% 
rP-(X-, Y-; E )  will also be used.] 

[The notation d ~ X + + a , s Y + )  = @+(X+: Y+; E )  and @-sX--a,sY-) = 
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The equation of the cylinder in both systems is 

where f ( y )  = (a2- $):-a, 

so that the radius, as measured in the inner regions, is a/€,  the curvature is € / a  (4 1) 
and the cylindrical surface is indistinguishable from the vertical tangents at E+ - to 
lowest order. 

This physically intuitive idea is modelled mathematically by rewriting the normal 
velocity condition on the cylinder in Cartesian form 

a@ dXa@ 
ax dYaY-O’  

(where (X, Y) is either (X+, Y+) or (X-, Y-) and @ is either @+ or @- depending on 
which inner region is under consideration), then expanding Gx, GY in Taylor series 
round X = 0. This leads to the condition 

co ar+i ar+i 
@ ( O ,  Y;E)-f’(EY) - G(0, Y;E) ]  = 0, r-o x gr(E, y ) [ W  axra Y 

in which 

Expansion of g r ( q  Y) and ~ ’ ( E Y )  in powers of E followed by substitution of any 
perturbation series 

qx, y; 4 = x a k ( 4  @k(X,  Y )  [ak+l (d  = o(ak(4)  as -01 
k,O 

leads, after equating coefficients of various gauge factors to zero, to conditions of the 
form 

@ k X ( O ,  Y )  = V,(Y), 

djOX(O,  Y) = 0. 

where Vk(Y) is either zero or a function of previously occurring potentials. In  
particular, 

In addition the harmonic potential coefficients @k satisfy the free-surface and edge 
conditions, i.e. @+@, = 0 on Y = 0 and B(a@/aR)+O as R+O. They are thus 
solutions of the ‘classical wavemaker’ type of problem but without a boundedness 
condition at co (see Appendix A). This is replaced by a condition matching the inner 
solutions to the outer solutions as described later. 

The outer region is divided into two further sub-regions, a boundary layer of width 
of order E in which wave effects are noticeable, and a region, many wavelengths from 
the free surface in which wave effects do not appear. The lowest-order form for the 
outer potential in this latter region is found by setting B = 0 in the original problem. 
This leads to a homogeneous problem for which a unique solution is obtained by 
matching with the wave-free part of a right inner solution of appropriate order. 

When a perturbation series 

has been developed, formal substitution in the surface condition rp+qV = 0 and 
equating of the coefficients of gauge factors of various orders to zero leads to a series 
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of conditions of the form q k  = f, where f is either zero or a function of previously 
determined terms. The potential coefficients must also be harmonic, satisfy avpr = 0 
on the submerged part of the cylinder and tend to  zero as the distance from the free 
surface increases. I n  addition, matching imposes a specified behaviour at E,. I n  the 
cases where f + 0, a particular solution can be found by conformal mapping or 
Green-function methods. To this may be added eigensolutions, i.e. solutions of the 
homogeneous problem. These are linear combinations of functions e,(z) (m E 2) where 

e,(z)  = Re [ i (:'3"""] ~ 

the coefficients in the linear combination being determined by matching with the 
wave-free part of the right inner solution. It may be noted that eigensolutions with 
m < 0 cannot occur since they would lead to terms in the left inner expansion 
(through matching) which would not satisfy the edge condition. Once the wave-free 
part of the outer perturbation series has been developed, matching with the inner 
regions is continued through the boundary layer up to the free surface by adding to 
the wave-free outer solution the wave terms from the inner regions expressed in outer 
coordinates. 

It is found that the scale factors in the perturbation series occurring in the various 
fluid sub-domains already mentioned are all of the form Es(logs)t where s, t are 
integers 2 0. Hence, to respect condition (iii) of theorem 1 in Fraenkel(l969, p. 223), 
it is necessary to adopt the matching principle proposed by Crighton & Leppington 
(1973) in which, for fixed s, all terms with scalings of this form (for various t )  must 
be determined and grouped together before detailed matching takes place. When this 
has been achieved, the wave-free parts of the right or left inner expansions, 
@* (X+, Y+ ; E )  up to terms of orders es will be denoted by @?). If the outer limiting 
process (€LO with (2, y) fixed) is applied to this inner expansion, the result will be 
equivalent to that obtained by letting R, + co in the potential coefficients (since 
R+ = 6*:/s) .  When the asymptotics of these potentials have been obtained to a 
cekain order, the result of replacing R, by S*/e and truncating the resulting series 
after terms of order E' will be denoted b y  @'+".'). Similarly, let I$)") denote the outer 
expansion up to  terms of order 6'. Applicationof the inner limiting process (s+O with 
(X,, Y+)  fixed) is equivalent to letting S+ + O  in the potential coefficients (i.e. the qk). 
When the asymptotics of these potentials have been obtained up to a certain order, 
the result of replacing 6, by ER+ and truncating the resulting series after terms of 
order es will be denoted by q('. SF The matching principle states that  @'$ ') = ~ ( ' 7  s, 

for any suitable r ,  s a t  our disposal. In  practice, determination of the eigensolutions 
occurring in the various problems requires that r be taken equal to  s+ 1 in the case 
of matching involving @+ , and that s be taken equal to r + 1 in the case of matching 
involving @- (see also Alker 1975). 

3. The perturbation expansions in the various regions 
The various matching cycles (right inner +outer+left inner) lead to the develop- 

ments for the perturbation expansions and reflection and transmission coefficients 
summarized in table I .  It should be noted that the gauge factor S ( E )  which may appear 
in the perturbation series for the left inner potential lies asymptotically between c5 
and e6 as E + O  but is to be taken as being of different order from either or 
@(log 6 ) .  
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The asymptotic development of the perturbation series begins in the right-inner 
region where the lowest-order term corresponds to total reflection of the incident 
wave, Matching with the wave-free outer region does not, therefore, involve this term. 
The presence of gauge factors other than positive integer powers of 8 in the subsequent 
development of @+ is discounted, since the particular @ multiplying such a gauge 
factor would have to be an eigensolution of the inner problem and therefore 
unbounded at infinity (see Appendix A). Matching with the wave-free part of the outer 
solution would, in consequence, dictate the presence of a term with a multipole 
singularity at  E- and hence (through matching again) the presence of a term in the 
series for @- which does not satisfy the edge condition. In the same way it can be 
shown that the various @pi do not contain eigensolutions. Note, however, that these 
results are not obvious at  the outset, but are established in a ‘step-by-step’ manner 
for the various matching cycles in turn. 

As was stated in 92 the right-inner potentials are harmonic and satisfy the 
free-surface and edge conditions. In addition, they satisfy the following conditions 
on X, = 0 (the + suffixes in X,, Y,, R, will now be omitted for brevity): 

i d  

1 d  
2adY( ddy) @ 2 X ( O ,  Y) = --- Y2- GI(O, Y)) 

1 d  i d  
2a dY ( ddY) @ 3 X ( O ,  Y) = --- Y2- @JO, Y)+-- Y4- QlX(0, Y) 8a2 dY ( ddY) 

1 d  l d  
y4&) @O(O, ’)+-- Y6- GO(O, Y). ( 1 )  48a3 dY( ddy) 

Q0 is an eigensolution with an incoming wave, so must be the standing wave solution 
2 exp ( - Y) cos X. The subsequent velocity distributions on X = 0 are respectively 
of orders exp ( -  Y), 1/ y2 and 1/ Y as Y+ co. Havelock’s (1929) integral solution 
(Appendix A) can, therefore, be applied to determine @jl, Q2 and @3 since the velocity 
distributions decay sufficiently rapidly to ensure convergence of the integrals 
involved. Nevertheless, the decay of order 1/ Y is not of sufficient strength to produce 
only vanishingly small terms in the far-field form of @j3, which contains also a term 
which is O(1) as R+ co (the vortex term in (3)). At the matching stage $4,3) = @(3*4) + ’  
this term is therefore added on to the required asymptotic form of v2 (see table l),  
at  E,. No contradiction is involved. The solution for q2, which was determined 
completely at  the previous matching stage, $3, 2, = @?? 3),  does contain an exactly 
corresponding term in its asymptotic form near E,  (see comment after (5) ) .  This term 
is of higher order than demanded for the asymptotic form by the matching 
$ 3 9 2 )  = but appears nevertheless because of other conditions imposed on p2, 
and provides useful evidence of the cohesion of the matching principle. 

in the far field, required for matching purposes, 
are now summarized below. Here X = R coso, Y = R sine, and the asymptotic 
results hold for R+ co and 0 < 0 < in. The wave parts are also included in the cases 
where they have been derived. 

The asymptotic forms of the 
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Y) = 2 exp(- Y) cos X 

331 

1 
Y) = -- exp (iX- 

2a 

8 
n2a2R 

exp(iX- Y)--(6cos8--sin8logR) 

8 sin6 8 
nC2a2R n a  

-- (2 - y +;) -- (6 sin 26 + cos 28 log R) 

44 sin 28 
+ (l0j3R) - 

y ) =  -- 46 3+- 8 sin6 [(logR)'-2 l o g R [ 3 - y + ~  n a n3a3R 

The result for is derived essentially by use of Watson's Lemma, while the integrals 
occurring in G2 can ultimately be reduced to the double-integral form covered by the 
theorem in Appendix B. The leading far-field terms stated for o3 depend only on the 
form of @3x(0, Y) far down the 'wavemaker' (X = 0) since a finite portion of the 
wavemaker contributes dipole and higher-order terms in the far field. The same 
applies to terms which are of negative exponential order far down the ' wavemaker ', 
so that examination of the equation for @3x(0, Y), ( l ) ,  shows that the leading far-field 
terms in G3 will be generated by the term -(1/2a)(d/dY( P(d/dY))@,(O, Y). 
Robertson (1984, Appendix C 3) has shown that the form this takes as Y+ co can 
be obtained by differentiation of the asymptotics of G2(0, Y) (equation 2 with 6 = in). 
This leads to the result 

]+0t+7 asy- tco  
1 2logY 9-2y+in/4 

+ P  @3x(o, Y )  = - 

whence Robertson (1984, Appendix C 4) derives the leading terms given in the far-field 
form of Q3. 

Attention is now turned to the solutions for the pt occurring in the outer 
perturbation series. It is first recalled that these are, of course, harmonic, satisfy the 
zero-normal-velocity condition on the submerged part of the cylinder and tend to zero 
at  infinity. Their definitions are completed by specification of their behaviour near 
E+ (as determined by the matching principle) and on the free surface. These 
specifications and the solutions for the qt are now detailed. First note, however, that 
in what follows x = a + 6, cos 8, y = 8 ,  sin 6,  and z = x+ iy ; further, any logarithms 
appearing are defined with a cut from a to - 00, and the asymptotic relations apply 
when 6, + O ;  again the + suffix will be dropped for brevity. 

8 sin6 2 
(ii) %(x,O) = 0, - -- n2a2& ' % = -&To; (4) 
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(iii) v2(x, 0) = - ~ ) ~ ~ ( z ,  0) ,  6 
- 

-2 
RU 

(The vortex term matching with that in G3 comes from the right-edge asymptotics 
of the second term above.) 

2 
(asymptotic form of v2)--(asymptotic form of R), 2 

P4 - -% n:U 

32 sin38 8 
nus3 R a 

-- 262 (8 sin 28 + log 6 cos 28) 
P5 = - 

+= [(log6)2-2 log6 3-y+- 
7r3a36 ( 31 

It follows that 

where 

+ “ r ~ ) [ l o g r ~ ) y  n3a4 %--a 

and C is a constant which can only be determined by finding the 0(1/R)  term in the 
far-field form of G3. This has not been attempted here. 

The asymptotic forms of the vi near E- are now required for the purpose of 
matching with the left inner region. To this end a new angle 8 is introduced equal 
to x - arg ( z  + a) and z in the solutions for the cpi above is replaced by -a - 6- e-ie. 
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The results are detailed below and the - suffix is dropped for brevity. The order terms 
apply for 6- + O .  

+o(m, 6 sin 8 sin 28 S3 sin 38 
VO = 7- 2xa4 + 4xa5 

asymptotic form of n), 2 
xa 

Q E I = - - (  

1 scose p2= --+- 
xu3 za4 

+ O ( n  
S2 sin 20 log S 

+ +a5 

2 46 26 cos 8 
p4 = =+- (sin8 logS+8 cos8)-- x a x3a5 x2a5 

2 logs 2 in) 2 sin 8 S(1og 
q5 = =+=(3-y-2 log%+- 8 + 

x3a5 

The potentials Y, (0 6 i 6 4) can now be determined explicitly (by inspection or 
using Lewy’s 1946 reduction method) from a knowledge of the values of their normal 
derivatives on X- = 0 and the leading terms of their asymptotic forms as R- + co , 
as determined by matching. In addition, the wave-parts of Y,, Y6, Y, (W,, W,, W, 
say), can be found without detailed knowledge of their asymptotics, while Ys is an 
eigensolution with no incoming wave and is therefore wave-free (Appendix A). The 
relevant data and solutions, where appropriate, are listed below (the - suffix being 
dropped for brevity). Several examples of the internal consistency of the matching 
process occur here and will be noted as they arise. 

The asymptotic form and solution for Yo are determined during the first matching 
cycle at the matching stage @ g 2 )  = ~ ( ~ 9  3, (table I) .  During the next cycle a t  the stage 
@ 5 3 )  = ~ ( ~ 9  the term - l/xa3 (from the left edge asymptotics of R) is added on to 
the required asymptotic form of Yo, which thus becomes the exact solution. 

-4R sin8 -4Y0 = -4( Y-1)  , Y1=- 
x2a4 na x2a4 ‘ 

(ii) Ylx(O, Y) = 0, Y 1 ( X ,  Y )  - 
The asymptotic form and solution for Y1 are determined during the second matching 
cycle at the matching stage @?33)  = d3s4). During the next cycle at  the stage 
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@P“!4) = a term 2/x2a4, from the left edge asymptotics of cp4, and an equal term 
arising from the term 2 logS/x2a4 in the left edge asymptotics of R, are added to 
the required asymptotic form of !PI. It is seen, therefore, that the required asymptotic 
form a t  this later stage is the exact solution. 

i d  - Y  
’) = - 

xu4 ’ (iii) YzX(O, Y) = --- dY ( y2 &) 
2R cos 8- R2 sin 28 2R(8 cos 8 + sin 8 log R) - 

2 ~ a 4  +a4 y2 - 
2R sin 8(2 - y - 2 log 2a + ix/8) 

x2a4 
- 

Thus 
2R cos 8-R2 sin 28 2(R sin8 log R+  R0 cos 0 -  1 -log R) !P2 = - 

2 ~ a 4  x2a4 

where 

-2(2-y-2 log2a+ix/8)( Y-1) 2 2i exp (iX- Y) 

E,(w) = Ju ?dt. 

+- Re [e‘*E,(iz)] + 
+a4 x2a4 xu4 

m e-t 

The asymptotic form and solution for Y2 are determined also during the second 
matching cycle at  the matching stage @E3) = ~ ( ~ 9 ~ ) .  During the next cycle, a t  the 
stage @!pa) = the two leading terms in the left-edge asymptotics of y5 cause 
the required asymptotic form of Y2 to be modified by the addition of the terms 
2 log R/x2a4 and 2(3 - y - 2 log 2a + ix/8)/x2a4. No contradiction is involved. The 
asymptotic form required at  the later matching stage is seen to consist of the first 
three terms in the solution. 

8 (Y-1)  - 8Y0 -- 
8R sin8 

(iv) Y3,(O, Y) = 0, Y3 - ~ Y3 = 
x3a5 ’ x3a5 n2a2’ 

1 d  4 
(v) P4,(0, Y) = -- - y2 - Y1(O, Y) = -- y (0, y) 2adY( ddY) xa 2x 

2 
(asymptotic form of Y2)  -- (asymptotic form of YJ. 

4 
xa xu 

Y4 - -- 
Thus 4 2 

xa xu 
y =--y --y 

1 d  
2adY( ddY) (vi) Y5,(0, Y) = -- - Y2 - Y2(0, Y), 

whence 

[ Y log ~ + ( 3 - y - 2  log2a+- Y 
8 1 Y5,(0, Y) = - x2a5 

i d  1 d 
7ca5 dY 7c2a5 dY 

+ - - ( ~2 e-*) + - Ei( Y )  - ( y2 ePY) 

where 
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The wave part of Y5( W,) can be found by a combination of Lewy’s reduction method 
and the Havelock wavemaker solution. It is given by 

W,(X, Y) = -- 

1 d  8 
(vii) Y6,(0, Y) = --- za dY ( &) y3(09 ‘) = y2X(09 ‘I’ 

8 16i w,(x, Y) = - W2(X, Y) = - x3a6 exp (iX- Y ) .  Hence 
x2a2 

(viii) 
1 d  d 

2adY dY 
Y,,(O, Y) = -- - (P -) Y4(0, Y) 

4 2 
xa Y5,(09 y1-G V4,(0’ Y). = -- 

(Recall that Y4 = -4/lcaY2-2/xaYl and that Y2 generates waves in Y, while Yl 
generates waves in Y4.) 

Thus 4 2 
KCX, Y )  = -G K(X, Y1-G W4(& Y) 

= -E (5-2y-2 
n3ae 

(ix) Y8 is an eigensolution and therefore wave-free. 
When the wave terms in the left inner expansion are collected together and 

expressed in outer coordinates it is seen that 

xa 
2i e 4  4 e  
x a  x a  

P = - (-) [I -- - 

Hence (with N = a/€) the transmission coefficient T is given by 

2i 
nN4 

T=-exp(-2iN) 

when appeal is made to the dependence of T on the ratio e/a only. 

4. Comparison of the values of T given by the completed fifth-order 
asymptotics with those obtained using Ursell’s multipole expansions, for 
8 G N G 2 0  

The multipole expansion method of Ursell(l949) represents the scattered potential 
by a superposition of multipole singularities placed a t  the centre of the circular 
cylinder. These singularities are either symmetric or antisymmetric in x, so it is 
convenient to consider symmetric and antisymmetric parts of the scattered potential 
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ER(N) 
N xi05 

8 0.85 
9 0.47 

10 0.27 
11 0.17 
12 0.11 
13 0.07 
14 0.05 
15 0.03 
16 0.02 
17 0.02 
18 0.01 
19 0.01 
20 0.007 

Re(T(N)) x lo5 Im(T(N)) x lo5 

A M A M 
-6.37 
- 8.44 

7.11 
-0.244 
-3.24 

2.06 
0.470 

0.648 
0.448 

0.179 
0.333 

- 1.44 

-0.696 

-6.22 
-8.09 

6.93 
-0.268 
-3.18 

2.04 
0.456 

0.646 
0.442 

0.179 
0.330 

- 1.43 

-0.692 

- 17.8 
8.14 
2.83 

1.66 
1.64 

0.268 
0.925 

-5.19 

- 1.89 

-0.761 
-0.0728 

0.532 
-0.31 1 

- 17.0 
7.92 
2.70 

1.65 
1.60 

0.271 
0.915 

-5.07 

- 1.87 

-0.757 
-0.070 

0.529 
-0.310 

(T(N)I x lo6 

A M 

18.9 18.1 
11.7 11.3 
7.65 7.43 
5.19 5.08 
3.64 3.58 
2.63 2.59 
1.95 1.92 
1.47 1.45 
1.13 1.12 
0.883 0.876 
0.699 0.695 
0.561 0.558 
0.455 0.453 

A M 
-1.91 -1.92 

2.37 2.37 
0.379 0.372 

2.67 2.66 
0.671 0.666 

2.96 2.95 
0.960 0.956 

-1.62 -1.62 

-1.33 -1.33 

-1.04 -1.04 
-3.04 -3.04 

1.25 1.24 
-0.752 -0.751 

TABLE 2. Values of T(N) (for 8 < N < 20) as given by the fifth-order asymptotic formula (A) 
and by multipole expansions (M) 

separately. The parts may be written as a superposition of a source or dipole, 
respectively, and a sequence of wave-free potentials. The resulting series is truncated 
and the boundary condition on the cylinder is imposed a t  a finite number of 
appropriately chosen points. By systematically increasing the number of points and 
inverting the resulting set of linear equations, a sequence of approximations to  the 
transmission coefficient is obtained. 

As the wavelength is reduced two problems arise. The multipole expansions 
themselves converge more slowly and it becomes necessary to  include more and more 
terms to resolve the details of the flow. Consequently, rounding errors may accumulate. 
More seriously, there is near cancellation of the contributions to  T from the symmetric 
and antisymmetric parts (these contributions are individually of order 1 while T is 
of order N-4) so that high accuracy is required in calculating these contributions. As 
a result, one cannot regard the multipole calculations as a check on the asymptotic 
calculations. The aim is rather to  establish a range of N over which numerically 
significant agreement is obtained between the asymptotics and the multipole 
calculations, the latter carried out to  the greatest accuracy possible with available 
computing facilities. I n  this context, double-precision arithmetic was used throughout 
the calculations while the expressions for the source and dipole terms (involving sine 
and cosine integrals and finite quadratures) were evaluated using NAG routines with 
a maximum absolute error of (according to  the specifications of the routines). 
The linear equations were inverted using a NAG routine which is stated to produce 
solutions with residuals which are zero to machine accuracy (i.e. maximum absolute 
error of around lo-'* in this case). 

Calculations of T and R were actually performed for the ranges N = O.Ol(O.01) 0.1, 
0.2(0.1) 1 .O, 1.5(0.5) 5.0,6( 1) 20. Theformulaeusedsatisfiedidenticallytherelationships 
I RI2 + I TI2 = 1, I arg R -  arg TI = (modulo K )  and the results were in agreement with 
those obtained by Martin & Dixon (1983) using a different computational scheme 
(they consider values of N up to 10). 

The results appropriate to this paper (values of T for 8 < N < 20) are given in table 
2 and are derived using multipole expansions of up to  80 terms. For 8 < N < 16, the 
values of 1 T ( M ;  N )  I ( M  = number of terms used in multipole expansion) are stable, 
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M\N 
50 
60 
70 
76 
77 
78 
79 
80 

16 

1,11595 
1.11914 
1,12004 
1.120 22 
1,12024 
1.12026 
1.12027 
1.12028 

17 

0.87083 
0.874 72 
0.87593 
0.876 2 1 
0.87624 
0.87627 
0.87629 
0.87631 

18 

0.689 10 
0.692 95 
0.69446 
0.69484 
0.69489 
0.69493 
0.69496 
0.69499 

19 

0.55027 
0.55552 
0.557 33 
0.557 81 
0.557 86 
0.557 91 
0.557 96 
0.55800 

TABLE 3. Numerical convergence of I T ( M ;  N )  1 x lo6 for 16 d N G 20 

20 

0.444 16 
0.45005 
0.452 16 
0.452 73 
0.45280 
0.45286 
0.45292 
0.45297 

to 3 significant figures, from M = 50 onwards in all cases. A t  the latter end of the 
sequences (M > 76) the variations in the values of I T ( M ;  N) I are occurring in the 
sixth significant figure and will not (on the basis of the numerical evidence) have any 
subsequent effect on the third figure. (An indication of the rate of convergence is given 
in table 3 for N = 16.) In  the cases 17 < N < 20, variations are still occurring in the 
fifth significant figure of I T ( M ;  N) I for M 2 76, so that the third significant figure 
must be considered in doubt. It has been quoted in table 2 (using I T ( M ;  N) I at M = 80) 
since the values thereby given will be underestimates of the multipole limit ( T ( M ;  N) 
is increasing with M) and this limit will, if anything, be nearer the asymptotic value 
than indicated by table 2. An indication of the rate of convergence of the sequences 
for 17 < N < 20 is also given in table 3. Table 2 shows significant agreement between 
the computed values and those obtained using the fifth-order asymptotic formula 

T - J -  2i exp(-2iN) [ 1+--- 410gN (e--y-log2+?)]. 8 
xN4 xN xN 

(The error estimate, ER(N), for this formula is the magnitude of the first neglected 
term 16(log N)2/a3N6). The occurrence of small relative differences of less than 1 % 
for the larger values of N provides strong evidence of a region of overlap. 

5. Summary and conclusions 
An asymptotic expansion of the transmission coefficient as N+co has been 

derived, including all the fifth-order terms and two sixth-order terms, by use of the 
method of matched asymptotic expansions. To achieve this has necessitated extending 
the perturbation series for the potential in the various fluid regions to order e3 (in the 
case of the right inner region), s4 (in the case of the outer region) and e6 log E (in the 
case of the left inner region). (Recall that the coefficients of the various gauge factors 
in the right inner, outer and left inner perturbation series are denoted by Qi, qg and 
Yb respectively.) A t  the matching stage at which a particular vi is determined, the 
matching principle identifies the dominant behaviour of this particular qi near the 
right edge of the cylinder as equivalent to that due to a superposition of multipole-type 
singularities (situated at the right edge) of orders (log 6+)m/6+n as 6, + O ,  where m, n 
are integers with m 2 0, n 2 1. The combination of such singular terms may be 
characterised as the ‘principal behaviour’ of the vi in question near the right edge. 
It is prescribed by the vanishingly small terms in the far-field forms of those Gk which 
have already been found and, together with the other conditions imposed at the free 
surface, on the cylinder and at infinity, is sufficient to determine qb completely. Once 
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this has been achieved, it has been evident in some cases (specifically i = 2,4,5) that 
the principal behaviour near the right edge is supplemented by weaker behaviour 
equivalent to a superposition of terms which are either source-like, vortex-like or 
vanishingly small. It may be conjectured, therefore, that this weak behaviour will 
be prescribed (during a later matching cycle) by terms which are not vanishingly small 
in the far-field forms of certain @k which are as yet undetermined. In other words, 
the ‘weak ’ behaviour of a pi predicts ‘ strong ’ behaviour in the far field of one or more 
of the @k which will appear in later matching cycles. (Such an inter-relationship has 
already been pointed out between p2 and G3 in $3.) In the same way, ‘weak’ 
behaviour in a !Pi in the far field predicts ‘strong’ behaviour (near the left edge) in 
one or more of the Q)k which are determined during a later matching cycle. (Several 
examples of this useful system of cross-checks are noted in $3.) It seems, therefore, 
that the matching principle as propounded by Crighton & Leppington (1973) has a 
striking internal cohesion which, to the author’s knowledge, has not been previously 
noted. 

From a numerical viewpoint, Ursell’s multipole expansion method is inefficient for 
large values of N .  However, the calculations have been performed to as high an 
accuracy as possible with available computing facilities and it is believed that three 
significant figures have been obtained for I T ( N )  I for 8 < N < 16 and two significant 
figures for 17 < N < 20 (see $ 4 ) .  Table 2 indicates a significant region of overlap with 
the fifth-order asymptotic formula for 8 < N < 20. For this range of moderate values 
of N it is not anticipated that the addition of the sixth-order terms would improve 
matters. The two terms derived in this paper can be combined as 

xN [log 4 N +  2y - 5 - - 
7C2N6 

and the expression log 4N + 2y - 5 is negative up to about N = 12, and a t  N = 20 has 
not advanced far enough into the asymptotic region to give meaningful results. 
Indeed, to obtain a value of log 4N only twice that of 5 - 2y would necessitate taking 
N to be around 550. It is not anticipated that this would be computationally tractable 
by any method known at present. 

I wish to thank Dr John Martin of Edinburgh University Mathematics Department 
for his help during the preparation of this paper, and Edinburgh University for the 
award of a Chalmers Research Scholarship. The computations were carried out on 
an ICL 2900 at the Edinburgh Regional Computing Centre. 

Appendix A. The Classical Wavemaker family of problems 

quadrant x > 0, y > 0, and such that 
The problem (in its general form) is to fhd a function U(x,y), harmonic in the 

kU+ U, = 0 (y = 0, x > 0), 
u, = V (z = 0, y > O ) ,  

where V is a prescribed function of y. 
The general solution is U(x, y) = P(x, y) + E ( z ,  y) where P(z, y) is a particular 

solution and E(x, y) is a solution of the corresponding homogeneous problem. 
Havelock (1929) provides a particular solution in the form 

P(x, y) = Jo‘ H(x, y ; k; 8 )  V ( 4  ds, 
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where 

H(x,y;k;s) = -2iexp[ikx-k(y+s)] 

(u cosuy-k sinuy)(u cosus-k sinus) - e Uxdu, 
u(u2 + k2) 

or = -2i exp [ikx- k(y+ 9)] 

u cosu(y+s)-k sinu(y+s) --ux 
e du. 

u2 + k2 

When V(y) is such that the integrals occurring in Havelock’s solution are non- 
convergent (e.g. V(y) = y occurs in the text) then Lewy’s (1946) reduction method 
may often be applied. 

Lewy’s method shows also that E(x, y) is precisely a linear combination of the 
functions 

(i) 

(ii) 

(iii) 

where 

ePky cos kx, 

- r2m cos2mO (m = ..., -2, - l , O ,  1,2, ...), 
kr2*+l sin (2m+ 1)d 

2m+l 

Re [eikZE,(ikz)] -n e-ky sin kx, 

E,(w) = - dt, x = r cos8, y = r sine. 

The functions of the above set which satisfy the edge condition r(&p/&-)+O as r+O 
are termed eigensolutions. Thus the eigensolutions are e-ky cos kx and those functions 
in (ii) for which m 2 0. Solution (iii) has source-like behaviour at the origin implying 
that an eigensolution cannot supply travelling waves at co (since these could only 
be formed by combining (i) and (iii) (cf. Alker 1975, p. 203). 

Appendix B 

asymptotics of c#j2 in the right inner expansion : 
The following theorem, proved in Robertson (1984), is required for determining the 

Iff, g are two functions defined on [0, co] such that 

(a)  f,gECm[O, 001, 

(b) fk(t)logt, gk(t)logt+O ast-+co f o r k = 0 , 1 , 2  ..., 

(c) JQ)T dt exists for all x > 0 (k = 0, 1,2, .  . .), 
5 

(d) Sm gk(t) dt is absolutely convergent (k = 0,1,2, .  . .), 
0 

then l(z) =“ Sow s,” f(t) g(u) e-ztu du dt 

exists and 
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where 

-gr(0) J Y+'(t) logt dt 
0 

1 O  
and 
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